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ABSTRACT

*%*Thi;'thesis presents an analysis of stochastic duels in-
volving two opposing weapon systems with constant rates of
fire. The duel was developed as a stationary Markov chain
with stochastic matrices of transition probabilities con-
structed from the single shot kill probabilities of the
weapon systems. A comparison was made of the presented
Markov chain analysis results with results from other ac-
cepted conditional probability methods. As expected, this

comparison established the validity of the Markov chain anal-

ysis and indicated advantages of the Markov chain approach in
analysis of discrete process stochastic duels: The analysis
was then extended to the two versus one duel where the threz h

weapon systems were assumed to have fixed rates of fire. (‘)
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I. INTRODUCTION

A. BACKGROUND

_The theory -of stochastic duels has been developed in
order to evaluate the provability of a weapon system sur-
viving -an engagement with anothe.. weapon system. The effect:
of weapon system parameters, such as single shot kill proba-
bilities, rate of fire, and tact.=zal (time) advantage can
be determined in the analysis of these duels,

Joseph J, Schoderbeck (1962) and Trevor ‘Williams and

C. J. Anckar, Jr, (1963) develuped the basic theory of the
stochastic duel and the "fundamental duel" was defined as
follows:

l. Two comb .tants, A and B, fired at each other until

~ one was killed.

2. The time between rounds fired was either a constant
or a random variable of known but different density function
for each combatant.

3. Each combatant had a different known but fixed single
shot kill probability.

4, The duel began with each combatant having unlimited
ammunition supplies,

5. Both combatants had unlimited time in which to scofé
a kill,

6. A tactical (time) advantage in firing the first shot

was assigned to one of the combatants.




Since the first development of stochastic duel theory in
1962, many extensions to the theory have evolved. Analysis
of weapon system duels constrained by ammunition limits, time
limits, or varying single shot kill probabilities has bLeen
accomplish=d. Also, distributions of +he time to kill and of
the number of rounds fired have been determissd. In addition
two-versus-one duels and two-versus-two duels have been de-
veloped. As more combatants participate in the duel, it was
shown that the results were in keeping with Lanchester models.

The objective of this thesis was to analyze the "funda-~
mental duel" involving fixed time between firings, using
stationary Markov chains, As expected the Markov process
analysis was shown to be equivalent to the conditional proka-
bilit& methodé. But in the Markov analysis of the stochastic
duel, there existed advantages over other analysis methods
that are indicated in Section II, Finally, the Markov anal-
ysis was extended to the two-versus-orie duel where all three

weapon systems were assumed to have fixed rates of fire.

B. PREVIOUSLY DEVELOPED ANALYSIS
Stochastic duels have been analyzed utilizing conditional

probability methods. Schoderbeck [Ref. 1) was first respons-

ible fZor the analysis of the fundamental duel involving fixed

time between firings. A summary of his analysis is presented
below.
A (friendly force) and B (enemy force) each possessed a

single weapon system with single shot kill probabilities Pa

and Pg respectively.
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5l D




RracT g

— P

Let a

time between A's firings.

b = time between B's firings.

It was assumed that at time, t=0, A fired his first shot
at B and that sometime la.cr, T, B returned fire. Also, it
was assumed that a=b, that T<a, and that each firing was an

independent event. Then the firing sequence looked like that

depicted in Fig. 1.

<> +b>
B Iy et AN £h X

t=0

Figure 1. " Firing Sequence of A and B,

Let Pr[A(to)] = Prob[A was alive and B was dead
at time t=t°] and
- lim
Pr[A(w)? = to+wpr[A(to)]‘

Considered first was t'.» interval a<to<a+T. Within this

interval there was the pcssibility that

a) A fired exactly two times,
b) B fired exactly one time.
Thus A was alive and B was dead if and only if

a) B was killed on A's fizst shot (so did not fire

a shot), or
b) B missed with his one shot and was killed by A's
second shot.

But, Pr[B was killed on A's first shot]

Pa
Pr{B missed with his first shot and was killed with

A's second shot] = (l-pA)(l-pB)PA = d,dpPp

6




and thus, Pr[A(to)] = Pptq,dpp, for a<t _<a + T.
Then considered was the intexval atT<t_<2a+T. In this

interval there was the possibility that

a) A fired exactly three shots.

b) B fired exactly two shots.
And here A was alive and B was dead if and only if

a) B did not fire at all (killed by A's first shot),
or b) B fired once, missed, and was killed by A's second
shot, or

c) B fired twice, missed twice, and was killed by A's
third shot,
But, Pr[Brdia not fire at all}] = Pa
Pr[B fired once, missed, and was killed by A's second shot]

Pr([B fired twice, missed tﬁice, and was killed by A's

3 = - 22
third shot] = (1-p,) (1-pp) (1-p,) (1-px)2, = qp9gP,
2 2
Hence, P{[A(to)] = PatdpadpPatd, 9 Py for a+T<t°<2a+T

By induction then for the interval (n-l)a+T<t°<na+T

Prla(t )] = pA+pA(quB)+pA(quB)2+- . -+pA(q‘AqB)n
1-(qu3)”}
= PalTs o (I-1)
A{ -quB
' - . 1-(quq) ™
o _ lim _ lim A”B
and Pr[A( )] = to+wPrIA(t°)! = noe pA ~{I:E—‘ }
P
= ]Tli___ (I-2)
~9a9p

L
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Since Py > ) and Py > 0 implied qA<l and qB<l and
11m — :
Ancker and Williams [Ref. 2] developed a method for anal-
yzing the fundamental duel with fixed firing rates, where

a#b but T=0. A summary of their analysis is presented helow.
The ratio E-was assumed to be a rational number and if
a and b contained a common factor, this ratio was reduced to
/B where & and B were relatively prime integers.
Let n = the largest number of times B was contained

in a,

Let r = the remainder when B was divided into «, then

a=nf+r.

Let P(A) = Pr(A won the duel) = Pr(A was alive, B was

;th shot if he missed B on his first

th

dead). Then A won on the j
j=1.shots and had hit on his j round, while B missed with

his first k rounds where k=[j{(a/B)] and

[%] = largest integer less than or equal to X,
Then the probability that A won the duel was ‘
_ j=1. k |
P(a) = JZ Padn” dp .
j=1_ n+(3 B
= p, Z qA dp int(j(x/8)]
J |
Pp i I-3) )
= Ig [(J+1)a/B] ( ;
- 1 B a z qA
-quB J
8
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-C. APPLICATIONS OF STOCHASTIC DUELS

As analytical formulations of combat operations, stochas-
tic duelr are of great value in providing insight for the
desigq of new weapon systems in advanced time frames.
Stochastic duels lend themselves easily ta parametric anal-
ysis. By varying parameters such as single shot kill proba-
bilities or firing rates, it is possible using this analysis
to determine tradeoffs between volume of fire versus accuracy
of fire.

The military éan apply the analysis of stochastic duels
to missile sites, artillery, torpedoes, and most other weapon
systems, Using realistic parameters, the survival proba-
bilities can be determined in engagements with enemy weapon
systems,

Analysis of duels involving fixed times betwéen firings ’
can also be compared with analysis of duels involving random.
times between firings, using the same parameter values. This
comparison could yield useful information concerning the
circumstances where a fixed rate of fire was more effective

»”

than a variable rate of fire.

Section II contains the presentation of the statibnary‘
Markov chain analysis of the fixed rate of fire stochastic
duel. This method was verified also in Section II by com-
paring results with conditional probability analysis results

which were presented in this Section. Examples of Markov

analysis of some duels completed Section II,



Section III presented an extension of the anaiysis to

the two-versus-one duel, including an example.

The conclusions reached after the analysis, and recom-

mendaticns for further study are contained in Section IV.

PP
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II, STOCHASTIC DUEL — FIXED RATES OF FIRE

A. DEVELOPMENT OF THE MARKOV CHAIN MODEL

A and B represented two combatants, each possessing one
weapon system. The weapon systems' respective single shot
kill probabilities were Pa and Pp e Further, it was assumed
that both A and B fired at a fixed rate so that a and b
represented the respective times between firings (in seconds)

of A and B, Then,

Ap = gQ = A's rate of fire (shots/min.)
A _ 60 _ . . .
B = F = B's rate of fire (shots/min.)

It was assumea also that both a and b were rational numbers
and that A had an arbitrary tactical time advantage, T (sec-
onds). Then:s

A fired his first shot at time, t=0, and

B fired his first shot at time, t=T.

A; then, fired his j*th shot at time

T K .. -
tagr a(j*-1) (II-1)
and B fired his kth shot at time
tax = T+b (k-1) (II-2)

illustrated in Fig. 2.

11




L - X —X

t=0

Figure 2. Time Relation Between A and B's Firings

At any time in the process, the duel was in one of four

possible states:

STATE 1: A was alive; R was alive
STATE 2: - A was alive; B was dead
STATE 3: A was dead; B was alive
STATE 4: A was dead; B was dead

It was noted that STATE 4 ovcurred only if A and B fired
simultaneously. Whenever A or B (or both) fired, the duel
underwent a transitinn from one state to another. Transition
matrices. associated with the three possible occurrences that
could cause a transition from one state to another are in the
form of the following:

1) A only fired

95 Pp 0 0
o 1 o0 o
Sl 0 1 o
\o, o o 1

2) B only fired

a 0 pg 0
. o 1 o 0
T lo o 1 o
o o0 o0 1




3) A and B fired simultaneously

9,9 Padp 9pPp  PpPp

0 1 0 0

P =
AB 0 0 1 0
0 0 0 1

where qp = l--pA and .qB = l-pB . ‘

The initial state vector at the beginning of the duel was

§s=(l,0,0,0) since the duel was always in STATE 1 (A and B

both alive) at the outset. After m transitions, however, h
the state vector was represented by
P = ForRrPari.oPy

where Pi,i=l,2,°--,m was PA' RB' or PAB depending on the fir-
ing sequence., This firing sequence was in turn dependent

upon. T, AA

To compute Fﬁ, the number of times A fired in the period

, and AB‘

. [0,T] first had to be determined. This was done as follows:

| Set tAj* = tBl r ©Or
a(j*-~1) = T , and solved for j*
j* = g +1 and if [j*] indicated the greatest
integer less than j* , then j = ([j*] = [% + 1] repre- &

sented the number of times A fired in the period [0,T]. Then,

—— m .
b P p. " for m<1
o'PA

3 L] =
Pm = 3 j . (II-3)
PRy P41 Ban*e . By X Jem
where PB,, i = j+ 1, j+ 2,.0., m was PA;PB or Py, 1

13
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depending on firing sequence derived from AA and AB' Also
beginning with Pj+l the sequences of matrices were periodic
as shown Lelow:

A fired his (j+l)st shot at time, t>T

B fired his 1lst shot at time t=T

The time between B's lst shot and A's (j+l)st shot was
tA,j+l - tBl =aj -"T (II1-4)

If 1 represented the period in seconds of the firing sequence
then the difference in time between the shot fired by A at
time t, . + nt and the shot fired by B at time
A,j+l
tgy * 0T, n=1,2,..., equaled the time interval of Eq., II-4.
This was proven by the following method:
a b

I S
AA = 3; and AB = 5; where ayr ay, bl' and b2 were

integers since a and b were assumed to be rational numbers.

Let L

lowest common multiple (L.C.M.) of a, and b?
L

L.C.M, (az,bz)

L L . .
Then o and 5;- were both integers.

2
_ L
LAA = al(gg)
_ L
LAB = bl (5;)
* =
Let L L.C.M, (LXA, LAB)
_ 60 L* . .
Then T = =——— (seconds) was the period of the firing
LAAAB
AA T \
sequence. A, then, fired 1(330 = 3 shots in t seconds and
AB T
B fired T(gﬁ) = 5 shots 1§ T seconds.

14
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Let n, = number of the shot A fired at time
tA,j-l-l + nt and ng = number of the shot B fired at time
}‘A
n o= j o+ 1+ {n1 (-6-0-)]
. AB
n, = 1+ {nt (-6-6-)} fFor n = 1,2,¢«.
A 60,
t _ . 60 . A = J
Amn, = a(nA-l) = o {j+nt (-6~0-)} = + nt
A A
t = T+b(n-l)=T+60{nT(}\B)};T+
B,ng B 5 60° 1~ nt
. 60j 60j
so that t -t = —2 4+ nt - (Tt+nr) = == -« T = a. - T
BInB— AInA AA AA J
ta, 541 " B2

In a cycle then the total number of shots fired, N, was rep-

: A A A
A B A L*
resented by N = T(x=) + T(ys) but t(ss) = —=— and
X 60" 80" 60" Lg
B L* L* 1 1
T(-x) = =— 8o that N = = (f—+ ) .
60° LAy L~ ’a

If N* represented the maximum number of matrices per cycle,

* *
then, /N, (%}\_' of type Pp i %—X—\of type B) if there
B A

was no simultaneous firing

‘ *
. ®
N* = < N-1, ((%TB-I) of type P,, (%xz - 1) of type Py

and 1 of type PAB) if there was a simulta-

\ neous firing,

15
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The state of the duel after n transition cycles (instead

of m transitions), then, was written as:

P - 23 . j . . . n
Pj+n - Pj Pa (Pj+1 Pj+2 Pj+m)

It was still necessary to determine if Pj+i for i = 1,2,+++,m
was a PA’PB' or PAB matrix. This was determined as follows:

In the first of the n cycles A fired his (j+l)st, (j+2)n4d,

. L*, th . . . .
eeas(j + ET-) shots while B fired his 1lst, 2nd,...,
B
L*

th
(75—
LAy

shots and the time that each of these shots occurred

was determined from Eqs. II-1l and II-2,
After ordering the matrices in the cycle let P* = product
of these m matrices (m-1 if there were simultaneous firings in

the sequence), i.e., P* = (P Also let

j+1’]?j_'_2' . s ..Pj"l'm) .

A* = P .p_J. But since
O A

o

j % i-1
Gy by 0 0 dp [PA__ qp JO
: i=1
p =[O0 1 o0 0 thenPAfJ::O 1 0

0 0 i

o

o
o
[
o
o

0 0 0 1 0 0 0

s
oF

[92)
(o]
‘*
=2
oY
rr
>
*
i}

% qu-l ’ 0, 0) = (al:a21a3'd4)

= 3
P .pP
o' a Ly

(qup
A Ai

5 = AxpxD . . .
then Pj+n A*pP (Pj"'n,l’ Pj+n’2I PJ+n,3I P3+n’4)

For-the solution to the duel, the individual terms of P.

J+n

were determined.

The matrix P* was of the form

16
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. 0 1 o0 o
T o 0 1 o
0 0o 0 1
then
912 Py (1+p))  p3(l+py)  p,(l4p,)
pe2 _ 0 1 0 0
0 0 1 0
0 0 0 1
913 [p,_(l+p1+p12)] (p3(l+pl+p12)] (94(1+p1+912)]
NI 0 1 0 0
0 a 1 0
0 0 0 1
Py" [Pziglpli-l][Paiilpli-]{p4i§lpli-1] ‘
o o 0 1 0 0
0 0 1 0
0 0 0 1

It was apparent that the 2nd, 3rd and 4th terms of the first

n s .
row of P* were geometric summations and were expressed as:

n n 1-p. 0

S ae W W B
P1 PolTmp 7 P3lrp; 7 PalTp

1 0 0
0 0 1 0 /
0 0 0 1

17
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Hence P, was expressed as the following:

:]+n
i>‘j+n = Rxpxl
L 341 1-p," 1-p," 1-p,"
R N PAiZ._lqA , 0, 0)f py" p2[l—p ] P3[1~p ] p4[1-9l ]
0 1 0 0
0 0 1 0
0 0 0 1

n .
. 1-p . 3 . 1-p 5
n_ j 1 3 1-1 1
Py gy o Pz‘“‘““l—.pl 1 q” + pAi.Z.qu* ' p3[1-——-—] qA '
l-p n

J
P4[1—p = 97

Since the objective of this analysis was the determination
of the systems' survival probabilities as the number of
transition cycles, n, got large, the results were presented
in the form of Table I. As a quick check, it was easily
seen that that the sum of the state probabilities in the

linit. as n+~ was:

| . : Prtp.tp
. -1 j,F2 ¥3 %4
0+ p, J gy + gyt (=)
Al A Py
1-q, . 1-p
_ A 3 1l

= 1 - qAJ + qAJ = 1, as it should. Using the sim-
plified notation where K* = (a;, 0,/ a3/ a4) then Table IT

was derived from Table I.

18
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TABLE I

DUEL STATE PROBABILITIES

After n Transition Cycles As n > o

Pr (A alive; j

n
B alive) 97" Py 0
] ; q P d,"Py P J : q P.
. -1, A 2 A Yl ¥2 i-1 A 2
Pr (A alive; p, § q,  —+ — - p q =
B dead) Pif1 P 1-py 1-py a;d,% 1-py
Pr (A d.ad; 9@’ py 9’ oy 3 qy” Ps
B alive) 15 - 1= — T
1 Py Py
Pr (A dead; ] n ]
r dead’ qA Py q Py Py dp” Py
B dead) 15, ~ ~ Ip; T5;
TABLE II
DUEL 'STATE PROBABILITIES
After n Transition Cycles As n + ®
[3 n
Pr (A alive; a; Py 0
B alive)
n
a.p 6,Py P a, P
. 172 171 2 1l T2
Pr (A alive; 0o, + y—— - — ) a, + = -
B dead) 2 I-p 1-py 2 " I-p)
: n
Pr (A dead;  1P3 _ %P1 . P3 ¢1 P3
B alive 1-p 1-p I-p
1 1 1
n .
Pr (A dead; M1P4 %P1 Py ®1 Py
B dead) 1-p, 1-p, I-p,

19
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B. EQUIVALEMNCE TO PREVIOUSLY DEVELOPED ANALYSIS
The MARKGV analysis of the Stochastic Duel involving
fixed firing rates was shown to hoXd for the model developed
by Schoderbeck and outlined in Section I. .In this model, the
times between firings, a and b, were assumed to be equal and
the time advantage of combatant A was assumed to be less than
a.
Given: a=b, ™a P_ = (1, 0, 0, 0)

o

Then, AA = A

firing at any time as the duel proceeded.

B and there was no possibility of a simultaneous

A9y Pp 0 0 95 0 Ppg O
0] 1 0 0 0 1l 0 0
P .= P =
A 00 0 1 0 B 0 0 1 0
0 0 0 1 0 0 0 1
. T .
j = [E + 1] = 1 (since 0<T<a)
Kk -
A = PO.‘PA = (qAI pAI _0' 0)
L = LoCoMo (azl bz) =a2
L* = L.C.M, (LAA, LAB) = LAA
N = I.‘—*. (}__.-{- !'.—.) = 2_&: (.];_.) = .2_:[_‘3\& = 2
LA
i; = LAA = 1 shot by A
B B
L* - Eié-= 1l shot by B
LAA LAA
B fired lst shot at time tB,l T
A fired 2nd shot at time t = a
A,2

20
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Since T<a, cycle was of form BA, so P* was just the product

of the two matrices, P, +P

A B -
a3 0 pg O dp Py 0 0 495 Ppdp Pp 0\
1o 1 0 O 0 1 0 0 0 1 0 0
P*x = } =
0 01 o 0 0 1 0 0 0 1 0
0 0 O 1 0 0 0 1 0 0 0 1
and
n
- n -
(4,9.)" P4 [l——(—qz—\-?gl—] ll 99y )
“A*B A*B l—quB Pg I=q.q
: A“B
V] 1 0 0
p*n = N
0 0 1 0
0 0 0 1/
1-(g,q,) "
P = F X% *n = [ e n . A=B
) [lr(quB)“] 0
AP iy,
A¥B'1 dpdp

The results we#e best summarized in Table III., Checking the
result obtained by this analysis and that develcoped in Sec~
tion II, it was seen that the two methods werf equivalent.
But this was not unexpected, as the MARKOV chain analysis
was basically the conditional probability analysis in matrix
notation.

Analogéusly the MARKOV analysis was shown to yield equiv-
alent resultsg of the ANCKER-WILLIAMS model also summarized
in Section I, as was expected. The clearest way to illus-
trate this equivalence was by example, since the firing rates

were not specified in the ANCKER-WILLIAMS model, and examples

are presented in the next Section.

21

J




TABLE IIX

DUEL STATE PROBABILITIES

Aftexr n Transition Cycles as n +»

ive 1 n

Pr (A alive, B alive) dp (quB) 0

Pr (A alive, B dead) tl—(quMB)n e

x alive, ea Par Yoo -
{ A SIS 1 495

: n
: 1-(g,qp) q,p
' Pr A dead, B alive) AP 1:~—§-§——} i;ﬁLli——
| 9a93 9a98
| Pr (A dead, B dead) b 0
)
i
; C. EXAMPLES
|

In this section three examples are presented illustratiag
the use of the MARKOV analysis. The first two examples em-

ployed no time advantage for combatant A to show equivalence
of this analysis to that developed by Ancker and Williams.

The other example illustrated the type of duel that was able

L to be analyzed by the MARKOV method but not by either of the

E methods developed by Schoderbeck or Ancker and Williams.

EXAMPLE 1. Py = 6, pg = .5, AA_= 4 shots per minute
AB = 2 shots per minute, T = 0,
‘ .4 .6 00 .50 .50 2 .3 .2 .3
3 ./’0 10 0\\ //0 1 0 0\ / 0 1 0 O \
.0 PP 1 P 10}PAB= 0 0 1°0
0 00O 00 0 1y 0 0 0 1

22
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atal

P—O = (ll Or 0, 0)
A 1 a, B 1 b2
L = L-C.Mo (az, bz) = L.C.M. (l, l) = l
LAA = 4, LAB = 2
L* = I,,C.M, (LAA, LAB) = L.C.M. (4, 2) = 4
60 L* (60) (4)
T = = = 30 sec.
LAAg | (D) (4] (2)
A
In 30 seconds A fired T(—§2 = ﬁéﬂlﬁﬁl.: 2 shots
60 60
and B fired (ig = 1391121-= 1l shot
a 150 60

o= e+ =0+1]=0
N-1l = ( + AB) =303+ 2y 1=2
=T 6‘ 60 ' 60
The nunber of P, matrices = (L* - 1) = 4 -1=1
A LAB Zli(?i .
and the number of P_ matrices = (E:—-- l) = 4. - 1l
B LAA (%)
and there was one PAB matrix in the cycle.
Then,
L - FpId=F.2%°=(1, 0,0, 0) = (d,, 0y @)
A =~ "o A A R T o\Tyr Mo
* = . =
P PA PAB .4 .600 2 .3 .2 .3 .08 .72 ,08
¢ 100 c 1 0 of}o 1l
0 010 0 0 X o 0 0
vd 0017 v0 0 0 17 \o 0 0
P =—=:,‘o*n
PJ + n P F; P

So as n + », using results found in Table II,

23

.12

0
0
1

|




Pr (A alive; B dead) o, +

2 l-pl

o 4+ (1 (.72)

I-T7.08)

.78

Ancker and Williams method yielded the following result:

P g~1 . .
Pr (A alive, B dead) = {———Eé_a__} ) qAJ qB[(J+l)—]
l—quB J=0

60 60 60 60
a = .= <= = ]5 b = — = = 30

A4 Ap =z
a - 1 _ 1 _ g
B 30 ) 8

Pr (A alive; B dead) { (.6§
l-(04) (05)

+ Galesh

EXAMPLE 2: P, 2, Py = .8, Ay
minute,
AB = 2 shots per minute, T = 0
.8 .200 .20 .80
{4 0 100 01 00O
P = P. = B
A 0 010 B 00 10
, 0 00 1 00 0
?6 = (1, 0, 0, 0)
A = 5 = i].'. A = 2 = bl
A T a, B T S;
L* = L.C.M. (5.2) = 10
_ 60 L* _  (60)(10) _
TG, T ormeier T 60 see

24
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0

.78

5 shots per

.16 .04 .64 .16

0 l 0 0

P.. =
AB 1o o0 1 o

0 0 0 1

= 2




A

In 60 seconds A fired -r(—A = 60(—§- = 5§ shots, and
60 60 !
B fired (fg, = 60{x%) = 2 shot
. T _
o= I3+ 1] = 0
A A
- A B, _ _ 5 2y 1 _
N-1 = T(E-G-'*‘g*o-) 1-50(604"6—6-) l= 6
*
The number of PA matrices in a firing cycle = (—E—
= .CD_%%)—- 1 = 4, and
the number of P_ matrices = Lr . 1) ( 10 - 1)
B L)\A ZIHSi
and there was one PAB matrix,
Then,
I = P [ j = P [] 0 - =
*
P = PP P PPP

A"TA"B"A"A'AB
and after doing this multiplication of matrices,

.013 .410 .564 .013

0 1 0 0
Pt =
0 0 1 -0
0 0 0 1

and as n + », using results from Table II.

®)Pa

@, + =

Pr (A alive; B dead)

I-013

L

.415
Ancker and Williams method yielded:

Pr (A alive; B dead) = ,415
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EXAMPLE 3: Py = -8, pg = .5, AA = 4 shots per minute,
AB = 3 vhots per minute, T = 15 seconds.
* .2 .,800 .50 .50 .1 .4 ,1 .4
0 100 01 00O 0O 1 0 O }
P = P = P = 1
A 0 010 B 00 10 AD 0 0 1 0 11
0 001 000 01 0 0 0 1
}?o = (1, 0, 0, 0) .
A = 4 = :a..]_'. A = 3 = E.].'. ]
A T a, B T b, q
= L.C.M. (1, 1) =1, L, = 4, Lig=3 4
L* = L.C.M. (4, 3) = 12
_ 60 L* _  (60)(12) = en -
T = LAAAB TITTITT§T 60 'seconds
In 60 seconds‘A fired (ié) = 60 ( 4)> = 4 shots, and
150 60 !
B fired t(5) = 60 (-3 = 3 shots
(zo 50
3 o= (411 = (B o= 1
A ‘A
N-1 = e+ &5) = 1 44+3-1=6
*
The number of P, matrices in a firing cycle = (%T— - 1)
B
_ 12 _ -
=mer -t 7?2

and the number of PB matrices =

G =D = -l oc 2
A

and there was one PAB matrix. Then,

X* = P‘ oP J = -P-OOP)A = (.2;' 08I 0, 0) = (al'a2'a3’Aa4)

* =
P PABPAPBPAPBPA

26




This matrix multiplication yieldead:

.0002 .4888 1110 .4000

0 1 0 0
P* =

] 0 0 1 0

0 0 0 1

and as n + «, again results were taken from Table II.

%P>

Pr (A alive, B dead) T
) 1l

U

o, +

2

(.2)(.4888) _ -
1=.0002 = .8980

i

.8 +

D, CHARACTERISTICS OF THIS MODEL

The MARKOV chain analysis of the Stochastic Duel was or.ly
another form of the conditional probability models presented
in Section I. ‘However, the Markov chain model enabled the

. analyst to consider duels where one side had a positive

time advantage with no restrictions on the length of the
time advantage. Thé model developed here allowed the anal-
ysis of duels involving different but fixed rates of fire by
the two combatants.

In contrast, Schoderbeck's model of the fixed firing rate
duel was restricted to a time advantage less than the time
period between two rounds from one combatant and further
restricted to the case where each combatant had the same
firing rate. Ancker ~nd Williams' development of the fixed
firing rate duel was restricted to the case where neithesx
F combatant had a time adwantage and both started firing simul-

taneously. Also their model only furnished results for the

27
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outcome probabilities in the limiting case after an infinite
number of exchanges. The Markov model yielded results for
the limiting case and the case after a finite number of
transition cycles, hence a finite number of rounds.

Another feature¢ of this model was the ease in which it
could be computer programmed. Analysts could be interested
in the duel outcome probabilities if either or both combat-
ants had limited ammunition. For given firing rates the
number of transition cycles before one combatant's ammuni-
tion was exhausted could be computed. Then Pr (A alive;

B dead) could be determined at that point,

Possible extensions of this analysis along with uses of

the fixed firing rate stochastic duei are presented in Section

Iv.
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III. TWO VERSUS ONE DURL —FIXED RATES OF FIRE

A. DEVELOPMENT OF THE MODLL

In the model combatant A dueled with two other combat- !

ants, B and C.

duel held, but here A was assumed to have two weapon systems
and fired at B with one and at C with the other.

Single shot kill probabilities, then were:

The same assumptions as in the one-on-one

Pr

(A killed B) (on

Pr (A killed Q)

Pr
Pr
Pr

Pxr

(B killed A)

(C killed A}

(B killed C)

]
(=]

(C killed B) = 0

Firing rates were:

one sheot at B)

AAB = rate of A's fire at B (shots per minute)
= ' .y " " "
Aac rate of A's fire at C ( ) 7
ABA = rate of B's fire at A ( " " " )
ACA = rate of C's fire at A ( * " " )
At any time in the process, Ehen, the duel was in one of J
* -
eight possible states: 3
STATE l: A alive; B alive; C alive
STATE 2: A alive; B alive; C dead
STATE 3: A alive; B dead; C alive ]
STATE 4: A alive; B dead; C dead
STATE 5: A dead; B alive; C alive
STATE 6: A dead; B alive; C dead
STATE 7: A dead; B dead; C alive
STATE 8: A dead; B dead; C dead

29
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Transition matrices associated with the fifteen possible

occurrences that could cause a transition from one state to

another are presented below:

CEST L: A fired at B

e e

{qma 0 ppy O 0 0 0 0 \
0 qp 0 Py 0o 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
Pap = 6o o o0 0 -1 0 0
0 o o0 0 o 1
o 0 0 0 0 0 1 0
L o o 0 0 0 0 O 1}
CASE 2: A fired at C
{ch Pc 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 dac Pac 0O 0 0 0
o o0 0 1 00 0 O
P =
AC o o0 0 0 10 6 0
o o 0 0 01 0 ©
\ o o0 0 0 0 0 1 O
o o0 ©0 ©0 00 0 1

30
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* CASE 3: B fired at &
dga 0 O 0 pg, 0 O 0O
0 gy, 0 0 0 pp O 0O
6o 0 1 0 0 0 0 0
© 0o 0o 1 0 0 0 O
ea T 6o 0 0 0 1 0 0 O
©o 0 o 0 0 1 0 0
©o 0 0 0 0 0 0 0
0o 0 0 0 0 0 0 0}
CASE 4: C fired at A
Gg 0 0 0 pg O 0 0
6 1 0 0 0 0 0 O
0 0 dop 0 0 0 Pca 0
6o 0 0 1 0 0 0 0
Foa 6 o 0 0 1 0 0 O
6o © 0 o0 0 1 0 O
©o 0 o0 ©0 0 1 0
6 0o 0 o0 0 0 0 1 }
CASE 5: A fired at B; B fired at A
EIAB qna 0 [p‘AB qu;] 0 [qAB_ PBA] 0 [pAB pBA] 0
0 [ %3 0 [Pas qB;‘l 0 s pBlg 0 [pAB Ppa|
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

31
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CASE 6: A fired at B; C fired at A

/[qAB 9ep) © (Pas qcz;} 0 [qAB pcz:l o [pAB pczq 0
0 0 0

9aB Fap 0 0 0
9 0 qg, o 0 0 Pap 0
N 0 o 0 10 o 0 0
0 0 0 o 1 o o 0
0 0o o o o 1 0 0
0 o o 0 o o 1 0
0 o o o ¢ o 0 1 }

CASE 7: A fired at C; B fired at A

[qAC dpp) Pac qu:) ¢ 0 @Ac pBA‘ [Pac Pra) 0 O \
0 g 0 0 O Py 0 O
.0 0 dac Pac 0 0 0 0
_ 0 0 0o 1 0 0 0 0
Pac.Ba
' 0 0 o o 1 0 0 0
0 0 o 0 0 1 0 0
0 0 o 0 o o 1 0
0 0 o 0 0 o o0 1
CASE 8: A fired at C; C fired at A
fAcqcz:}[PAcqci] 0 0 [aacPeA)PacPca) © 0
0 1 0 o 0 0 0 0
° ° [EactcA Pacica] © 0 @ACPCA][?ACPCA]
pAC «CA "~ 0 0 0 1 0 0 0 0
0 0 0 o 1 0 0 0
0 0 0 0 1l 0 0
0 0 o 0 0 1 0
0 0 0 o 0 0 0 1
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CASE 9: A fired at B; A fired at ¢

1

(a5 ch] {qAB pAC] [pAB ch] {:pAB Pacf 0 0.0

0 dpp 0 Pag 0 0 O

0 0 e Ppc 0 00

p 0 0 0 1 0 0 0
AB*AC =

0 0 0 0 10 0

0 0 0 0 0 1 0

\ 0 0 0 0 0 0 1

0 0 0 0 0 0 0

CASE 10: B fired at A; C fired at A

( (apa qcza 00 00 fpp,ac,*apPeytPpaPenl] ©

0 Aga O 00 Ppa 0
0 0 gy, 00 0 Pea
- Ponecn = 0 0 0 90 0 0
0 0 0 00 0 0
0 0 0 00 1 0
. \ 0 0 0 00 0 1
0 0 0 00 0 0

Y

——
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In this model the initial state vector was:

:Fo = (1, 0, 0, 0, 0,0, 0, 0)

It was further assumed here that A had time advantages
over both combatants B and C and that these time advantages
were equal. In order to proceed with the analysis, it was
then necessary to compute the numbcr of times A fired at each
of the other combatants.

Let T = time advantage A had over B and C (in seconds).
Then, the number of times A fired a£ B in the intexval [0, T]

was determined as follows:

Al -
Set tAB,jB Or

BA,1l

%
90 (8 -1 = T
AB

AapT

*
jB = ~6—6-—+l
Then, jB = [jB*] represented the number of times A fired at
B in the interval [0, T], where [*] was as defined in Section
AacT
II, Likewise jC = [jc*]=[—%%- + 1) represented the number
of times A fired at C in the interval [0,T].

Singe by the nature of the matrices PAB and PAC' multi-

plication of these two matrices in any order was commutative

jB. jc L & L]
AB PAC . Performing this matrix
jB

multiplication, it was seen that the form of P,.-" was:

so that A* = PP

39
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Gypis 0 (p %Bq 1'1] 0
AB AB, %, “AB
B
3B g
0 AR 0 [PABquABl
0 0 1 0
0 0 0 1
B _
PaB
0 0 0 0
0 0 0 0
0 0 0 0
o 0 0 0
Likewise the form of pACJC was:
: iC :
jC s :L-l]
9ac (PAC@_ %ac 0 0
i=1l
0 1 0 0
. jc
C
0 0 Iac’ [PAC.z &
. i=1
p,. ¢ =
AC - 0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

40




It followed that PABJBPACJC = PACJCPABJB and was of the form:
. . . jo . .. 3B, .7
jB jC] 3B : 1-5}{,, jC :L—-ll
{E‘AB dac EIAB ®ac.t 9 11Papdac _g_ dpB
i=1 i=1 ‘
iB
0 R 0
. . jC
jB;  jC_ 0 0 q, .7
Pap’ Pac AC
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
[ 2P, B gc i- ] o 0o 0o 0
PP q q
°asac.l,%B L %c
B
[pAB $a Fl] o o o 0
=1 hB
‘ I =
[PAci__Z dac ] 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

41

o




o

T T——Y

gla

T e e e — o, .

and, then

2 . . jC . . B
Ak = IB JjC JB g i-1 ic J i -1
A% = (qp™ dpe” v Ipp Pacit,%c 7 Pam 95 .ElqAB =

_ j . .
Pag Pac. L % I % v 0/ 00 0, 0)

i
,—J
=

(al[a2,a3’a4’ 0' 0, 0’ O)o

It followed from the derivation in Section II that the
firing sequence in the two-versus-one duel was also periodic.
The combination of the fifteen possible transition matrices
depended on the firing sequence, which was again dependent
on AAB’ AAC' ABA, ACA' and T. In any case the form of P¥%,
the matrix representing one firing cycle was of the form:

P* = Pj+1°Pj+2°“‘°Pj+M where j = jB + jC

( P13 P12 P13 Pyg4 P15 Pig P17 Pla\

0 Pyp 0 Py O Py O Ppg
px = 0 0 P33 Pyy 0 O P3y; Pag

©o o o 1 0 © 0 0

o o o o0 1 0o 0 0

o o o o o 1 0 0

©o o o0 o0 0 o 1 0

o o o0 o o 0 o0 1

After n of these transition cvcles; then:




n .
n 1«1 n-i
[Py ) [Py, L Py Pyy )
i=1
0 Pzzn
0 0
Q 0
P*n:: 0 0
0 0
0 0
0 0
Col., 1 Col, 2
n
i-1 w
(’ Pyg Ll Py
L
Corat T oyyten
PP Pi P
12°245L, (L oP11 P22
w2 J gy
* p13p34j£ ! P127Py3
e >
n
i-1
Poy L P ]
i-1
['1’34._2__l P33 ]
1
0
0
0
0
Col., 4

43

Col, 5§

T




Y

-‘pn‘—-_

n .
p Z P i-1 p z 1-1
16,4, P11 17,2,P11 :
-2 g . n-2
-1 ) ’ i j=3.
t P1aPyg, L 15oF11 P22 ) p139373.20 iiopll P33’
n
i-1
Pys L P 0
26,4, P22

n .

0 (b ) P33 ]

37,£,P33 ;

0 0

0 0

1 .0

0 1

0 0

Col. 6 Col. 7

r i-1

Pig. L. P
184,711

n-=2 . .
* PyaPyg L % p111922J
3=0 i=0

n-z . »
+ PyaPag ) § Py Paz’
13P38 L) ;L P11 P33

a i-1
[st ) 1F22 ]

n .
i-1
[938.2 P33 ]-

i=1

l. 8
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The probability that the duel was in any one of the eight

possible states after n transition cycles was taken from:

P = F* pxn

Pisn A* p

= (Pr (STATE 1), Pr (STATE 2),-.., Pxr (STATE §&))
and the results of this multiplication is presented in Table

Iv.
Then, utilizing the notation fcxr E*, i.e.
Ax = (all Oor Ggr Gyr 0, 0, 9, 0)
the state probabilities of the duel were computed as the

number of transition cycles got very large (n»w), Table V

was then derived from Table IV.
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TABLE IV

DUEL STATE PROBABILITIES

- State
Probabilities

—

After n Transition Cycles

jB jC n

Pr (STATE 1) dac P11

Inn

B, ic n i-1_ n-i

I i
Pr (STATE 2)  dpp” 9pe plziZ]pll P2

jC

) 4
sy %nc

jc n i-1 !
Pac 9p8” P22 .

. . n . .
P B C i-1 n=i
l:

5 i=l

n
Pag Iac” P13 izlqAB

i,

3B

jC . i-1
das” 9ac” [Pg

Pr (STATE 4) L Py

~3 3

]
| et

i

l
)
?
{
t
i
i
& il

n-2 j . ..
i j=-1i
Pys Pos.l Y Py, P
12 P24yt . bF11 F22
n-1 J ,

. i j-i
Pia Pag ) ) Pyq Pazt )
13 P3a.Ly i LF11 33

: jc n

jB i-1
Pacd P q p
AC?AB 24i__E_l AC izl 22

+

i-1

. JB . n :
":]C o ' .. i-1 -
Pasdac p344£lqAB i_2_1933

1

jB

. 13
P ) 4
asPac L. 9aB

1i-1

¢ 1
TP quAC




»
il o i o

a8

il | ug wr, ™

L5

—._.
. §

T

State
Probabilities

TABLE’IV~~99§tianG

- s ——

After n Transiticn Cycles

Pr (STATE &)

Pr (STATE 6)

Pr (STATE 7)

Pr (STATE 8)

. . n .
jB jC i-1
9aB” 9ac Plsjzlpll
3B -1

jc T, i
Gy’ Yac’ P16,k F1

n-2

i j-i
* Plzpzsjzo ) Py Ppz” )

1=0
RIS
PzeiX Qe L Py

=], S 1=l

5B -1
* Pac 9ap

. . n .
3B JjC ] i-1
928" ac -[prl"?iz gh!

n-1

© P3P3y, ) ™)
3=0

§.‘P:Llip33j

* Pap Iac
. . n

jB 3C 1

9aB”  9ac [pleizlpll

n—

2 4 .
+ Pyy Prg ) & P, p

12 Pag Ly (LoPi1 Poz
-1

j—-i

_ . % i
T P13 p3stO L P11 P33d™hy

r—

jB
* Pac 9pp Pag,

* Pap 9ac

.-l "

2 s Vortii

g

ISR TR
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-

State

Probabilij}g§_

Pr (STATE

Pr (STATE

Pr (STATE

Pr (STATE

Px (STATE

Px (STATE

Pr (STATE

BPr (STATE

1)

2)

3)

4)

5)

7)

8)

Where Pyg*

TABLE V

DUEL STATE PROBABILITIES

As n > «

To see how the summations of the form

n L
P
4P

-1

n-i
Prk

n-2 ;
- p p—
50 120 11 Pk

and

converged see Appendix A.
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0
%1 P14 “1P1aPagP12” ®1P)3P34P13"
P (1"912*)2 ‘1‘913*)2
N U2Pny N 3P34 .
1Py  1-P3j 4
*1P1s
1-Pqq
*
%1P16 N “1P12P26P12 . %2P26
=Py, (1-py,*) ° =By, -
*
%1P17 N %1P13P37P13 . ®3P37
1-P1y (1-py %) 1-py3
* \
%1P1g . %1P12PagPia . %1Py3P3gP1 3’
I-P1y (1-py,*) * (1-py %) 2
. 2P28 . %3P3g
1°py, 1-P33
max(pPyys Pyy) and pyg* = max(pyy. P33

. )7Lk =2,3
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EXAMPLE:
I£F9m3='8'PM:=’S'pmx='6'pﬂx=fi

) = 4 shots per minute, = 2 shots per minute

‘AB AnC

3 shots per minute, ) = 2 shots per minute

A CA

Ba

and T = 15 sec. The firing seguence is illustrated in Fig.

3.
15 15 15 15 15
A at B X X X X X X
30 30 30
A at C —X A >4 X
15 20 20 20 timeA
B at A X X X X
T 30 - 30
C at A X e X
=0 )
- Figure 3, Firing Sequence
Then 56 = (1, 0, 0, O, O, 0, O, 0)
: — A nT —= S
‘n = [.AB” = {4) (15) =
AT
. - AC (2) (15) -
* = P jB jC = P o _
A Po Pap” Pact T PotPpp Pue
= (.04, .16, .16, .64, 0, 0, 0, 0)
P* =

Pos1'Posn’ e -Pog

= P P P

AB+BA+CA PAB-AC PBA AB.CA PBA AB+AC

Multiplying these matrices yielded:
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{.000001 .000045 .003896 ,171393 ,161062 ,004147 .659456 0

0 .000102 0 .388861 0 .131037 0 .48
0 0 .0l .44 0 0 .55 0
0 0 0 1 0 0 0 0
Pk=
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1}

Thus, at end of

duel (as n-»)

Pr (A alive; B dead; C dead) = r (STATE 4)
%1P14 %1P19P24Py 2" N ®1P)3P34Py 3" . 2P2a  %3P34
P11 (1mpy %)@ (1-py %) 1=pyy  17P33
where plz* = max (pll’ p22) = ,000102 and
Pp3* = max (py;, P33) = .01
Pr (STATE 4) = .77758
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IV. CONCLUSIONS AND RECOMMENDATIOWS

A. CONCLUSIONS

Tﬁe development in this thesis of the fixed firing rate
Stochastic duel was presented to serve as an analytical
tool in evaluating present or proposed weapon systems. The
use of Markov chains in the model cnabled the analysis of

more complex but also more realistic weapon system engage-

ments than other models previously developed. The state

probabilities of the model in the limit as the number of
transition cycles increased werc functions only of single
shot kill probabilities and hence easily computable and com-
puter proyrammable. By computer programming this model,
parxametric studies of firing rates, single shot kill prob-
abilities and time advantage could be performed. Also, if
the number of transition cycles was fixed as a function of
one combatant's limited ammunition supply, then state prob-
abilities can be determined for the duel where ammunition is
limited.

The two-versus-one duel evolved utilizing the same tech-
nique as the fundamental duel analysis. Kesults were more
complex, however state probabilities still depended solely
on kill probabilities and time advantage. It was thought

that the two-versus-one duel would be extremely difficult to

develop as a conditional probability model, even without con-

sidering a time advantage.
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StocﬁagEiawddETé"iﬁvol&lﬁﬁacéﬁbataﬁts with fixed rates
of fire can be of considerable importance in the evaluation
of weapon systems, Using models developed by C, J, Ancker
and others, the fixed rate of fire duel can be compared to
the duel where time between firing is a random variable,
Analysis of the random firing rate and fixed firing rate
models could yield the optimal firing doctrine for given
parameters, To do this, the mean values of the random fir-
ing rates should be set equal to the fixed firing rates in

the Markov chain model,

B. RECOMMENDATTIONS
Further analysis into the fixed rate of fire stochastic
duel can consider the following areas:
1. Analysis of the duel considering properties inherent
to discrete parameter Markov chains found in Parzen [Ref., 4]
and specifically investigating such properties as:
a. First passage probabilities and first passage
times.
b. Absorption probabilities and mean absorption
times.
c. Stationary distributions.
d. Limiting occupation times,
2. Analysis of the two-versus-one duel where the time
advantage combatant A has over B and that which A has over
C are unequal.
3. The distribution of rounds fired in a stochastic duel
utilizing techniques of C. J. Ancker, Jr., and A. V. Gafarian

[Ref. 3].
52

44

A b




APPDNDIX A

SOME_CONVERGLNCE PROOTS
lim § =l n-g
Al e i_z__lpll Co Pk T 0 k=23 p,,p, 2
PROOF':

Let P11 > Pyi and substitute P

11 for py, in

the expression above. This yields:

. n .
lim E n-1  _  1lim n=1
nre

l:

1 T now NPy
Applying L' lospital's rule:

lim ( n ) = lim [ 1
nre -ntl’ T poe
11

] =0

-p, - ntl
11 lnpll
5., %
oo 3mi P1x .
=
i=g 11 kk (l_plk*)z

a-11, lim nfz
* n-)-oo L
j=0

k =2, 3; Pyyr pkk < 1

where Pi* = max (pll’ Pyc)

PROOF: Substitute Py * for Py and Py in above

expression. This yields:

. n-2 . S 1 .
R PR UL
n-+co §=0 =0 1k n-o = 1k
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. n-2 .
= l:m Pu* L a‘g‘? (plk*J)
(oo} 4 3
n 1k j=0 “P1k

. n-2 .
= ﬁfﬁ Pyy* aﬁg'?' L ey
: ' 1k~ §=0
.n-1.
lim R

* .
ne Py dpq)* [ l—plk* ]

_olim |, (Lepp 9 = (=D pyy - (epy, $0h (-1)

nre Pik” [ 5 ]
- *) &
(1= Py™)
; Py * Py * -
= iig (—2k 5+ 1k ~3 [(n—2)plk*n 1
(1—'Plk ) (l“Plk ) 1
Py * -
, - 2 (-, 72
, *
. (A-II-1)
. but the second and third terms of Eq. A-II-1 went to zero in

the limit as n-»« by the proof of A-I above.
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